3.1.29 \(\int \frac {1-x^4}{1-5 x^4+x^8} \, dx\)

Optimal. Leaf size=169 \[ \frac {\tan ^{-1}\left (\sqrt {\frac {2}{\sqrt {7}-\sqrt {3}}} x\right )}{\sqrt {14 \left (\sqrt {7}-\sqrt {3}\right )}}+\frac {\tan ^{-1}\left (\sqrt {\frac {2}{\sqrt {3}+\sqrt {7}}} x\right )}{\sqrt {14 \left (\sqrt {3}+\sqrt {7}\right )}}+\frac {\tanh ^{-1}\left (\sqrt {\frac {2}{\sqrt {7}-\sqrt {3}}} x\right )}{\sqrt {14 \left (\sqrt {7}-\sqrt {3}\right )}}+\frac {\tanh ^{-1}\left (\sqrt {\frac {2}{\sqrt {3}+\sqrt {7}}} x\right )}{\sqrt {14 \left (\sqrt {3}+\sqrt {7}\right )}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1419, 1093, 207, 203} \begin {gather*} \frac {\tan ^{-1}\left (\sqrt {\frac {2}{\sqrt {7}-\sqrt {3}}} x\right )}{\sqrt {14 \left (\sqrt {7}-\sqrt {3}\right )}}+\frac {\tan ^{-1}\left (\sqrt {\frac {2}{\sqrt {3}+\sqrt {7}}} x\right )}{\sqrt {14 \left (\sqrt {3}+\sqrt {7}\right )}}+\frac {\tanh ^{-1}\left (\sqrt {\frac {2}{\sqrt {7}-\sqrt {3}}} x\right )}{\sqrt {14 \left (\sqrt {7}-\sqrt {3}\right )}}+\frac {\tanh ^{-1}\left (\sqrt {\frac {2}{\sqrt {3}+\sqrt {7}}} x\right )}{\sqrt {14 \left (\sqrt {3}+\sqrt {7}\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - x^4)/(1 - 5*x^4 + x^8),x]

[Out]

ArcTan[Sqrt[2/(-Sqrt[3] + Sqrt[7])]*x]/Sqrt[14*(-Sqrt[3] + Sqrt[7])] + ArcTan[Sqrt[2/(Sqrt[3] + Sqrt[7])]*x]/S
qrt[14*(Sqrt[3] + Sqrt[7])] + ArcTanh[Sqrt[2/(-Sqrt[3] + Sqrt[7])]*x]/Sqrt[14*(-Sqrt[3] + Sqrt[7])] + ArcTanh[
Sqrt[2/(Sqrt[3] + Sqrt[7])]*x]/Sqrt[14*(Sqrt[3] + Sqrt[7])]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 1093

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/(b/
2 - q/2 + c*x^2), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 1419

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[(2*d)/e -
b/c, 2]}, Dist[e/(2*c), Int[1/Simp[d/e + q*x^(n/2) + x^n, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x^(n/2
) + x^n, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2,
 0] && IGtQ[n/2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !LtQ[(2*d)/e - b/c, 0] && EqQ[d, e*Rt[a/c, 2]]))

Rubi steps

\begin {align*} \int \frac {1-x^4}{1-5 x^4+x^8} \, dx &=-\left (\frac {1}{2} \int \frac {1}{-1-\sqrt {3} x^2+x^4} \, dx\right )-\frac {1}{2} \int \frac {1}{-1+\sqrt {3} x^2+x^4} \, dx\\ &=-\frac {\int \frac {1}{-\frac {\sqrt {3}}{2}-\frac {\sqrt {7}}{2}+x^2} \, dx}{2 \sqrt {7}}-\frac {\int \frac {1}{\frac {\sqrt {3}}{2}-\frac {\sqrt {7}}{2}+x^2} \, dx}{2 \sqrt {7}}+\frac {\int \frac {1}{-\frac {\sqrt {3}}{2}+\frac {\sqrt {7}}{2}+x^2} \, dx}{2 \sqrt {7}}+\frac {\int \frac {1}{\frac {\sqrt {3}}{2}+\frac {\sqrt {7}}{2}+x^2} \, dx}{2 \sqrt {7}}\\ &=\frac {\tan ^{-1}\left (\sqrt {\frac {2}{-\sqrt {3}+\sqrt {7}}} x\right )}{\sqrt {14 \left (-\sqrt {3}+\sqrt {7}\right )}}+\frac {\tan ^{-1}\left (\sqrt {\frac {2}{\sqrt {3}+\sqrt {7}}} x\right )}{\sqrt {14 \left (\sqrt {3}+\sqrt {7}\right )}}+\frac {\tanh ^{-1}\left (\sqrt {\frac {2}{-\sqrt {3}+\sqrt {7}}} x\right )}{\sqrt {14 \left (-\sqrt {3}+\sqrt {7}\right )}}+\frac {\tanh ^{-1}\left (\sqrt {\frac {2}{\sqrt {3}+\sqrt {7}}} x\right )}{\sqrt {14 \left (\sqrt {3}+\sqrt {7}\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 57, normalized size = 0.34 \begin {gather*} -\frac {1}{4} \text {RootSum}\left [\text {$\#$1}^8-5 \text {$\#$1}^4+1\&,\frac {\text {$\#$1}^4 \log (x-\text {$\#$1})-\log (x-\text {$\#$1})}{2 \text {$\#$1}^7-5 \text {$\#$1}^3}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - x^4)/(1 - 5*x^4 + x^8),x]

[Out]

-1/4*RootSum[1 - 5*#1^4 + #1^8 & , (-Log[x - #1] + Log[x - #1]*#1^4)/(-5*#1^3 + 2*#1^7) & ]

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1-x^4}{1-5 x^4+x^8} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(1 - x^4)/(1 - 5*x^4 + x^8),x]

[Out]

IntegrateAlgebraic[(1 - x^4)/(1 - 5*x^4 + x^8), x]

________________________________________________________________________________________

fricas [B]  time = 1.81, size = 546, normalized size = 3.23 \begin {gather*} -\frac {1}{14} \, \sqrt {14} \sqrt {\sqrt {2} \sqrt {-\sqrt {7} \sqrt {3} + 5}} \arctan \left (\frac {1}{112} \, \sqrt {14} \sqrt {4 \, x^{2} + {\left (\sqrt {7} \sqrt {3} \sqrt {2} + 5 \, \sqrt {2}\right )} \sqrt {-\sqrt {7} \sqrt {3} + 5}} {\left (\sqrt {7} \sqrt {3} \sqrt {2} + 7 \, \sqrt {2}\right )} \sqrt {-\sqrt {7} \sqrt {3} + 5} \sqrt {\sqrt {2} \sqrt {-\sqrt {7} \sqrt {3} + 5}} - \frac {1}{56} \, \sqrt {14} {\left (\sqrt {7} \sqrt {3} \sqrt {2} x + 7 \, \sqrt {2} x\right )} \sqrt {-\sqrt {7} \sqrt {3} + 5} \sqrt {\sqrt {2} \sqrt {-\sqrt {7} \sqrt {3} + 5}}\right ) + \frac {1}{14} \, \sqrt {14} \sqrt {\sqrt {2} \sqrt {\sqrt {7} \sqrt {3} + 5}} \arctan \left (\frac {1}{112} \, {\left (\sqrt {14} \sqrt {4 \, x^{2} - {\left (\sqrt {7} \sqrt {3} \sqrt {2} - 5 \, \sqrt {2}\right )} \sqrt {\sqrt {7} \sqrt {3} + 5}} {\left (\sqrt {7} \sqrt {3} \sqrt {2} - 7 \, \sqrt {2}\right )} \sqrt {\sqrt {7} \sqrt {3} + 5} - 2 \, \sqrt {14} {\left (\sqrt {7} \sqrt {3} \sqrt {2} x - 7 \, \sqrt {2} x\right )} \sqrt {\sqrt {7} \sqrt {3} + 5}\right )} \sqrt {\sqrt {2} \sqrt {\sqrt {7} \sqrt {3} + 5}}\right ) - \frac {1}{56} \, \sqrt {14} \sqrt {\sqrt {2} \sqrt {\sqrt {7} \sqrt {3} + 5}} \log \left (\sqrt {14} {\left (\sqrt {7} \sqrt {3} - 7\right )} \sqrt {\sqrt {2} \sqrt {\sqrt {7} \sqrt {3} + 5}} + 28 \, x\right ) + \frac {1}{56} \, \sqrt {14} \sqrt {\sqrt {2} \sqrt {\sqrt {7} \sqrt {3} + 5}} \log \left (-\sqrt {14} {\left (\sqrt {7} \sqrt {3} - 7\right )} \sqrt {\sqrt {2} \sqrt {\sqrt {7} \sqrt {3} + 5}} + 28 \, x\right ) + \frac {1}{56} \, \sqrt {14} \sqrt {\sqrt {2} \sqrt {-\sqrt {7} \sqrt {3} + 5}} \log \left (\sqrt {14} {\left (\sqrt {7} \sqrt {3} + 7\right )} \sqrt {\sqrt {2} \sqrt {-\sqrt {7} \sqrt {3} + 5}} + 28 \, x\right ) - \frac {1}{56} \, \sqrt {14} \sqrt {\sqrt {2} \sqrt {-\sqrt {7} \sqrt {3} + 5}} \log \left (-\sqrt {14} {\left (\sqrt {7} \sqrt {3} + 7\right )} \sqrt {\sqrt {2} \sqrt {-\sqrt {7} \sqrt {3} + 5}} + 28 \, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8-5*x^4+1),x, algorithm="fricas")

[Out]

-1/14*sqrt(14)*sqrt(sqrt(2)*sqrt(-sqrt(7)*sqrt(3) + 5))*arctan(1/112*sqrt(14)*sqrt(4*x^2 + (sqrt(7)*sqrt(3)*sq
rt(2) + 5*sqrt(2))*sqrt(-sqrt(7)*sqrt(3) + 5))*(sqrt(7)*sqrt(3)*sqrt(2) + 7*sqrt(2))*sqrt(-sqrt(7)*sqrt(3) + 5
)*sqrt(sqrt(2)*sqrt(-sqrt(7)*sqrt(3) + 5)) - 1/56*sqrt(14)*(sqrt(7)*sqrt(3)*sqrt(2)*x + 7*sqrt(2)*x)*sqrt(-sqr
t(7)*sqrt(3) + 5)*sqrt(sqrt(2)*sqrt(-sqrt(7)*sqrt(3) + 5))) + 1/14*sqrt(14)*sqrt(sqrt(2)*sqrt(sqrt(7)*sqrt(3)
+ 5))*arctan(1/112*(sqrt(14)*sqrt(4*x^2 - (sqrt(7)*sqrt(3)*sqrt(2) - 5*sqrt(2))*sqrt(sqrt(7)*sqrt(3) + 5))*(sq
rt(7)*sqrt(3)*sqrt(2) - 7*sqrt(2))*sqrt(sqrt(7)*sqrt(3) + 5) - 2*sqrt(14)*(sqrt(7)*sqrt(3)*sqrt(2)*x - 7*sqrt(
2)*x)*sqrt(sqrt(7)*sqrt(3) + 5))*sqrt(sqrt(2)*sqrt(sqrt(7)*sqrt(3) + 5))) - 1/56*sqrt(14)*sqrt(sqrt(2)*sqrt(sq
rt(7)*sqrt(3) + 5))*log(sqrt(14)*(sqrt(7)*sqrt(3) - 7)*sqrt(sqrt(2)*sqrt(sqrt(7)*sqrt(3) + 5)) + 28*x) + 1/56*
sqrt(14)*sqrt(sqrt(2)*sqrt(sqrt(7)*sqrt(3) + 5))*log(-sqrt(14)*(sqrt(7)*sqrt(3) - 7)*sqrt(sqrt(2)*sqrt(sqrt(7)
*sqrt(3) + 5)) + 28*x) + 1/56*sqrt(14)*sqrt(sqrt(2)*sqrt(-sqrt(7)*sqrt(3) + 5))*log(sqrt(14)*(sqrt(7)*sqrt(3)
+ 7)*sqrt(sqrt(2)*sqrt(-sqrt(7)*sqrt(3) + 5)) + 28*x) - 1/56*sqrt(14)*sqrt(sqrt(2)*sqrt(-sqrt(7)*sqrt(3) + 5))
*log(-sqrt(14)*(sqrt(7)*sqrt(3) + 7)*sqrt(sqrt(2)*sqrt(-sqrt(7)*sqrt(3) + 5)) + 28*x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8-5*x^4+1),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to convert to real 1/4 Error: Bad Argument ValueUnable to convert to real 1/4 Error: Bad Argument Value

________________________________________________________________________________________

maple [C]  time = 0.01, size = 44, normalized size = 0.26 \begin {gather*} \frac {\left (-\RootOf \left (\textit {\_Z}^{8}-5 \textit {\_Z}^{4}+1\right )^{4}+1\right ) \ln \left (-\RootOf \left (\textit {\_Z}^{8}-5 \textit {\_Z}^{4}+1\right )+x \right )}{8 \RootOf \left (\textit {\_Z}^{8}-5 \textit {\_Z}^{4}+1\right )^{7}-20 \RootOf \left (\textit {\_Z}^{8}-5 \textit {\_Z}^{4}+1\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^4+1)/(x^8-5*x^4+1),x)

[Out]

1/4*sum((-_R^4+1)/(2*_R^7-5*_R^3)*ln(-_R+x),_R=RootOf(_Z^8-5*_Z^4+1))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {x^{4} - 1}{x^{8} - 5 \, x^{4} + 1}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8-5*x^4+1),x, algorithm="maxima")

[Out]

-integrate((x^4 - 1)/(x^8 - 5*x^4 + 1), x)

________________________________________________________________________________________

mupad [B]  time = 1.79, size = 483, normalized size = 2.86 \begin {gather*} \frac {2^{3/4}\,\sqrt {7}\,\mathrm {atan}\left (\frac {405\,2^{3/4}\,\sqrt {7}\,x\,{\left (5-\sqrt {21}\right )}^{1/4}}{2\,\left (243\,\sqrt {2}\,\sqrt {5-\sqrt {21}}-54\,\sqrt {2}\,\sqrt {21}\,\sqrt {5-\sqrt {21}}\right )}-\frac {621\,2^{3/4}\,\sqrt {7}\,\sqrt {21}\,x\,{\left (5-\sqrt {21}\right )}^{1/4}}{14\,\left (243\,\sqrt {2}\,\sqrt {5-\sqrt {21}}-54\,\sqrt {2}\,\sqrt {21}\,\sqrt {5-\sqrt {21}}\right )}\right )\,{\left (5-\sqrt {21}\right )}^{1/4}}{28}-\frac {2^{3/4}\,\sqrt {7}\,\mathrm {atan}\left (\frac {2^{3/4}\,\sqrt {7}\,x\,{\left (5-\sqrt {21}\right )}^{1/4}\,405{}\mathrm {i}}{2\,\left (243\,\sqrt {2}\,\sqrt {5-\sqrt {21}}-54\,\sqrt {2}\,\sqrt {21}\,\sqrt {5-\sqrt {21}}\right )}-\frac {2^{3/4}\,\sqrt {7}\,\sqrt {21}\,x\,{\left (5-\sqrt {21}\right )}^{1/4}\,621{}\mathrm {i}}{14\,\left (243\,\sqrt {2}\,\sqrt {5-\sqrt {21}}-54\,\sqrt {2}\,\sqrt {21}\,\sqrt {5-\sqrt {21}}\right )}\right )\,{\left (5-\sqrt {21}\right )}^{1/4}\,1{}\mathrm {i}}{28}+\frac {2^{3/4}\,\sqrt {7}\,\mathrm {atan}\left (\frac {405\,2^{3/4}\,\sqrt {7}\,x\,{\left (\sqrt {21}+5\right )}^{1/4}}{2\,\left (243\,\sqrt {2}\,\sqrt {\sqrt {21}+5}+54\,\sqrt {2}\,\sqrt {21}\,\sqrt {\sqrt {21}+5}\right )}+\frac {621\,2^{3/4}\,\sqrt {7}\,\sqrt {21}\,x\,{\left (\sqrt {21}+5\right )}^{1/4}}{14\,\left (243\,\sqrt {2}\,\sqrt {\sqrt {21}+5}+54\,\sqrt {2}\,\sqrt {21}\,\sqrt {\sqrt {21}+5}\right )}\right )\,{\left (\sqrt {21}+5\right )}^{1/4}}{28}-\frac {2^{3/4}\,\sqrt {7}\,\mathrm {atan}\left (\frac {2^{3/4}\,\sqrt {7}\,x\,{\left (\sqrt {21}+5\right )}^{1/4}\,405{}\mathrm {i}}{2\,\left (243\,\sqrt {2}\,\sqrt {\sqrt {21}+5}+54\,\sqrt {2}\,\sqrt {21}\,\sqrt {\sqrt {21}+5}\right )}+\frac {2^{3/4}\,\sqrt {7}\,\sqrt {21}\,x\,{\left (\sqrt {21}+5\right )}^{1/4}\,621{}\mathrm {i}}{14\,\left (243\,\sqrt {2}\,\sqrt {\sqrt {21}+5}+54\,\sqrt {2}\,\sqrt {21}\,\sqrt {\sqrt {21}+5}\right )}\right )\,{\left (\sqrt {21}+5\right )}^{1/4}\,1{}\mathrm {i}}{28} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^4 - 1)/(x^8 - 5*x^4 + 1),x)

[Out]

(2^(3/4)*7^(1/2)*atan((405*2^(3/4)*7^(1/2)*x*(5 - 21^(1/2))^(1/4))/(2*(243*2^(1/2)*(5 - 21^(1/2))^(1/2) - 54*2
^(1/2)*21^(1/2)*(5 - 21^(1/2))^(1/2))) - (621*2^(3/4)*7^(1/2)*21^(1/2)*x*(5 - 21^(1/2))^(1/4))/(14*(243*2^(1/2
)*(5 - 21^(1/2))^(1/2) - 54*2^(1/2)*21^(1/2)*(5 - 21^(1/2))^(1/2))))*(5 - 21^(1/2))^(1/4))/28 - (2^(3/4)*7^(1/
2)*atan((2^(3/4)*7^(1/2)*x*(5 - 21^(1/2))^(1/4)*405i)/(2*(243*2^(1/2)*(5 - 21^(1/2))^(1/2) - 54*2^(1/2)*21^(1/
2)*(5 - 21^(1/2))^(1/2))) - (2^(3/4)*7^(1/2)*21^(1/2)*x*(5 - 21^(1/2))^(1/4)*621i)/(14*(243*2^(1/2)*(5 - 21^(1
/2))^(1/2) - 54*2^(1/2)*21^(1/2)*(5 - 21^(1/2))^(1/2))))*(5 - 21^(1/2))^(1/4)*1i)/28 + (2^(3/4)*7^(1/2)*atan((
405*2^(3/4)*7^(1/2)*x*(21^(1/2) + 5)^(1/4))/(2*(243*2^(1/2)*(21^(1/2) + 5)^(1/2) + 54*2^(1/2)*21^(1/2)*(21^(1/
2) + 5)^(1/2))) + (621*2^(3/4)*7^(1/2)*21^(1/2)*x*(21^(1/2) + 5)^(1/4))/(14*(243*2^(1/2)*(21^(1/2) + 5)^(1/2)
+ 54*2^(1/2)*21^(1/2)*(21^(1/2) + 5)^(1/2))))*(21^(1/2) + 5)^(1/4))/28 - (2^(3/4)*7^(1/2)*atan((2^(3/4)*7^(1/2
)*x*(21^(1/2) + 5)^(1/4)*405i)/(2*(243*2^(1/2)*(21^(1/2) + 5)^(1/2) + 54*2^(1/2)*21^(1/2)*(21^(1/2) + 5)^(1/2)
)) + (2^(3/4)*7^(1/2)*21^(1/2)*x*(21^(1/2) + 5)^(1/4)*621i)/(14*(243*2^(1/2)*(21^(1/2) + 5)^(1/2) + 54*2^(1/2)
*21^(1/2)*(21^(1/2) + 5)^(1/2))))*(21^(1/2) + 5)^(1/4)*1i)/28

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 26, normalized size = 0.15 \begin {gather*} - \operatorname {RootSum} {\left (157351936 t^{8} - 62720 t^{4} + 1, \left (t \mapsto t \log {\left (50176 t^{5} - 24 t + x \right )} \right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**4+1)/(x**8-5*x**4+1),x)

[Out]

-RootSum(157351936*_t**8 - 62720*_t**4 + 1, Lambda(_t, _t*log(50176*_t**5 - 24*_t + x)))

________________________________________________________________________________________